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SUMMARY 

In gas-particle two-phase flows, when the concentration of the dispersed phase is low, certain assumptions 
may be made which simplify considerably the equations one has to solve. The gas and particle flows are 
then linked only via the interaction terms. One may therefore uncouple the full system of equations into 
two subsystems: one for the gas phase, whose homogeneous part reduces to the Euler equations; and a 
second system for the particle motion, whose homogeneous part is a degenerate hyperbolic system. The 
equations governing the gas phase flow may be solved using a high-resolution scheme, while the equations 
describing the motion of the dispersed phase are treated by a donor-cell method using the solution of a 
particular Riemann problem. Coupling is then achieved via the right-hand-side terms. To illustrate the 
capabilities of the proposed method, results are presented for a case specially chosen from among the most 
difficult to handle, since it involves certain geometrical difficulties, the treatment of regions in which particles 
are absent and the capturing of particle fronts. 
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1. INTRODUCTION 

Two-phase flows are encountered in numerous industrial applications ranging from internal 
combustion engines to space vehicle propulsion and even in nuclear energy processes. These 
flows may take various forms depending upon the actual state.' Among these types, one is 
commonly known as the dispersed phase flow: one of the phases is dispersed within the other and 
most often carried along with it. It is this particular type of flow we shall refer to in the following. 

It is essential to make a distinction between flows in which the gas phase is heavily loaded 
with particles and those in which the particle content is diluted. Although no fundamental 
difference arises in the physical approach to these two types, the assumptions that one may be 
led to adopt in either of these cases might change the mathematical nature of the equations to 
be solved and subsequently might impose the choice of the numerical method to be employed. 
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In most numerical simulations of gas-particle two-phase flows available in the literature, the 
‘two-fluid’ model is commonly retained. In this model the gas and dispersed phases are treated 
as distinct continuous media, while momentum and energy exchanges take place across the 
particle surface involving the viscosity and thermal conductivity. In the case of a heavily laden 
flow the basic equations in the two-fluid model are as follows.2 

Conservation of mass 

where p k  and 
a, is the void 

uk are the density and the x-component of velocity respectively for phase k and 
fraction (a, = 1 - as). 

Conservation of momentum 

where Pk is the pressure of phase k .  

Conservation of energy--first law of thermodynamics 

where ek is the total energy per unit mass of phase k. 

Evolution of the real density of the dispersed phase. The inequality relation for the entropy 
suggests a relation for the dynamic compaction allowing one to take into account the 
compressibility of each phase: 

where R ,  is the interparticle stress tensor and p c  is the dynamic compaction viscosity. 
In these equations the right-hand sides are coupling terms: mass transfer in equations (la) 

and (lb); momentum transfer induced by mass transfer and drag forces in equations (2a) and 
(2b); and energy transfer induced by mass transfer, convective heat flux and work of drag forces 
in equations (3a) and (3b). We shall not dwell on these terms; their expressions may be found 
in References 2-4. 
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A mathematical analysis of this system of equations carried out by Embid and Baer' has 
revealed that it admits a number of distinct characteristic directions and therefore the system is 
strictly hyperbolic under certain conditions. Hyperbolicity is due to the existence of a pressure 
disequilibrium between the phases during compaction processes; this is taken into account by 
the introduction of an intergranular stress tensor representing the forces exerted between the 
particles. Owing to its hyperbolic aspect, the system may (in principle) be solved by classical 
numerical methods already in common use in gas-dynamics, among which the most popular 
are the finite difference scheme of MacCormack6 and the finite volume formulations of Van 
Leer' and Roe.' This system has been solved for the first time by Baer and Nunziato' using 
the flux-corrected transport method due to Book et al. (finite differences). Soon afterwards 
Toro'' proposed a Godunov-type method'' (finite volume) in which a Riemann problem was 
solved for the subsystem of the particle phase in a slightly simplified case. 

Flows of heavily laden fluids with particles must be contrasted with highly diluted ones. For 
the latter case a number of simplifying assumptions may be made, mainly upon the volume 
occupied by the particles and its implication in the pressure terms.12 One is then led to solving 
the following system, which is formally simpler and widely 

dp, aPgUg +---0, 
at ax 

- 0, -+-- dPS apsus 
a t  ax 

System (5 )  is readily identified as the Euler equations; one should also remark that systems 
( 5 )  and (6) are coupled only by the phase interaction terms, the void fraction being absent 
(compare with system (1H3)). The homogeneous left-hand parts of systems (5) and (6) being 
uncoupled, they may therefore be solved independently. One then recovers for system (5) the 
three well-known real characteristic directions u + a, u - a and u (a  being the sound speed); this 
ensures the hyperbolic nature of the system and allows a relatively easy resolution with the help, 
for example, of some high-resolution scheme.'.' System (6), on the other hand, admits only a 
single characteristic direction us. It can be shown that this system is hyperbolic degenerate and 
may have multivalued solutions. We shall come back to this difficulty in the next section and 
propose an efficient method for solving the system of equations ( 5 )  and (6) generalized to the 
two-dimensional case. 

When studying highly diluted flows, other formulations are available that solve for a 
distribution of particle size and velo~ities.' '~'~ In this formulation a similar system of equations 
to ( 5 )  and (6) is first obtained. In this approach the gas-phase equations are commonly solved by 
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a Eulerian method while the particle equations are solved by a Lagrangian method. This 
procedure has been widely u ~ e d . ‘ ~ , ’ ~  When the flow contains particles of different sizes or with 
a velocity distribution which cannot be considered as a barycentric velocity, the Liouville- 
Boltzmann equation can be added to the formulation. This formulation is sometimes called the 
spray formulation equations.’ * The solution of this complete formulation-gas phase equations, 
Lagrangian particle phase equations and Liouville-Boltzmann equation-can be obtained by 
the method developed by Dukowicz.” This formulation gives excellent results and is of particular 
interest when solving complex flow configurations (e.g. particle vortices). When the flow 
configuration is not so complex, which is the case for many industrial applications where 
particles are generally accelerated continuously from the injector to the exit, the method 
presented herein can be sufficiently accurate. In addition, in many industrial applications the 
difficulty is related to the geometry, which is why we propose a numerical method suitable for 
unstructured meshes. The present method is a pure Eulerian formulation and can produce 
reliable results in a very short computational time. In contrast, using a Lagrangian scheme for 
the particle phase is expensive when the gas equations are solved on an unstructured mesh. The 
expensiveness comes from the research of the neighbouring cells of gas around a Lagrangian 
location of a group of particles, where interpolations are to be performed in order to couple the 
two systems. 

We must recall that between these two extreme cases of heavily laden and highly diluted 
media there also exists the case of flows moderately laden with particles. The system of equations 
describing such flows is a non-conservative one. Sainsaulieu and Raviart” have carried out a 
mathematical analysis of the type of these equations. Assuming that a difference in pressure 
exists between the gas and liquid phases owing to the surface tension, one obtains a strictly 
hyperbolic system. The same authors have proposed a numerical approach extending Roe’s 
scheme; however, this procedure does not seem to be readily extended to gas-solid particle flows. 

The next section will be devoted to (i) a mathematical study of the system (5 ) ,  (6) extended to 
the two-dimensional case and (ii) the development of a finite volume formulation allowing the 
treatment of diluted two-phase flows in complex geometries. We shall then give some comparison 
with existing schemes to provide validation of the current scheme and afterwards other results 
illustrating the capabilities of the method. We conclude by discussing the research perspectives 
in this domain. 

2. NUMERICAL SCHEME 

The equations of the two-fluid model applied to the case of diluted two-phase flows are written 
as follows in two-dimensional Cartesian co-ordinates: 



TWO-PHASE COMPRESSIBLE FLOWS 807 

We notice that in order to simplify matters, the particles are assumed to exchange neither 
mass nor energy. The gas-particle interactions are therefore assumed to be due only to the drag 
forces. We point out, however, that in principle there is no difficulty in also taking into account 
the mass and energy transfers. 

In addition some assumptions are formulated. 

1. The volume occupied by the particles is negligible. 
2. The particles are spherical and monodisperse. 
3. Collisions, coalescence and break-up are not considered. 
4. Turbulence is not considered. 
5 .  The particle velocity is a barycentric velocity, which means that in each cell all particles 

If the behaviour of different sizes of particles is needed, one has to solve as many systems (8) 

Systems (7) and (8) being uncoupled, the homogeneous problems can be solved separately for 

1. Solve the homogeneous problem for the gas motion. 
2. Solve the homogeneous problem for the particles. 
3. Couple the two systems via the interaction terms. 

are assumed to have an average velocity. 

as there are sizes of particles. This is a limitation of this formulation. 

the gas and particle systems. To summarize, the following procedure results. 

2.1. Solution of the homogeneous system for the gasflow 

vector form 
The homogeneous part of system (6) is actually the Euler equation and may be written in the 

au aF, a F ,  
at ax ay - + ~ + - = 0. (9) 

The following method is an extension of Van Leer’s scheme for unstructured meshes due to 
F o r e ~ t i e r . ~ ~  Within an unstructured mesh define a cell q in which the solution is assumed to 
be piecewise linear; this solution will thus be determined by a certain mean value tJ: and by 
two slopes, d,? in the x-direction and S,? in the y-direction. Define also by I ( i )  (i = 1-4) all the 
neighbouring cells of q, and denote by S q  the boundary of q (Figure 1). 

Let oJ and wJ1 be the centres of gravity of cells 7;. and 7;., with co-ordinates (xu,, y,) and 

(a) The first (predictor) step consists of computing the values of U;;’’* viewed from the contour 

(xu,l, Yu,J respectively. 

ST,. As an example take S q  n Sq, . First 

u:T,,,T,, = uj” + %,?(xu, - xu,,) + f q Y ,  - Yw,J.  
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Then 

However, 

Figure 1. Elements of an unstructured mesh 

a u  aF ,  au a ~ ,  a u  
at au ax au ay 
-+ - - +-- =o. 

Thus 

(b) We now need to write down the fluxes of the various variables which cross the interface 
6Tj n S T j ,  along the normal to this line; we are then led to a one-dimensional Riemann problem. 

Denote by ii the outward-pointing normal to the line 6 q  n ST,; define also the vector 
V,(ii) = (p,  piiii,  associated with the vector U = (p,  pu, pu, P E ) ~ ,  where ii = (u, u)~. The 
vector G(ti), which will allow us to compute the fluxes along the normal direction, results as the 
solution to the Riemann problem set at the interface between the two cells: 

(c) One may now apply the conservation law 

where ri = (n,, fi2). 
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It is noticed that Fi(Y;~JA/,2,,k) is computed at the middle of each face and is assumed constant 
along each segment. Denoting by ni one of the components of the unit normal to a segment, 
one may then write 

n t  112 
Fi( v! ~,~6',,$ i da = Fi( 'd T, n d T,)?  d T, n d TI!, 1 s d T,nd T,I 

where n: is one of the components of the non-unit normal to the face Sl;. n 6 T j k .  One then obtains 

(d) We only need to compute the slopes of conservative variables on each element. For this 
purpose one applies the total-variation-diminishing (TVD) procedure: if 

for k = j l ,  . . . , j  4 q+' - G 
- 

are of the same sign, then 

otherwise 

dy+' = 0, 

This summarizes the minmod flux function. The procedure is the same for the slopes along the 
y-direction. 

2.2. Solution of the homogeneous problem for  the particle motion 

make certain preliminary remarks. These equations may be written as 
Before dwelling on the solution procedure for the homogeneous part of system (8), we must 

By combining the equation of mass conservation with the momentum equation, one obtains 
the system 

dP, apsus apsus -+- +--=O, 
at ax a y  

au, au, au 
- + us - + v, 2 = 0,  
at ax ay  

au, au, avs 
- + us - + us ~ = 0, 
at a x  ay  
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where the equations of motion have been replaced by the two-dimensional equivalent of the 
Burgers equations. Obviously in the 1D case the relevant equations would be 

au, au, 
- + u s  - = 0. 
at ax 

This type of system has been studied by Miura and GlassI6 and recently by Forestier and Le 
F l o ~ h . ~ ~  Equation (13) (the Burgers equation) may be solved separately since it is independent 
of equation (12). Now the Burgers equation admits shocks as solutions, whereas by applying 
the Hugoniot relations to system (10) (or to its 1D equivalent), one finds that in our case shocks 
cannot subsist.24 One must conclude that the equations for the particle motion written in the 
form (10) fail to provide a physically realistic solution in the vicinity of shocks. In addition, 
solving the Burgers equations separately provides a unique value for the velocity, instead of two 
values as is possible for the multivaluated system (10). Several ways out of this impasse can be 
envisaged. The first consists of solving equation (10) in such a manner as to avoid the formation 
of a shock, as proposed by Miura and Glass,16 but then extension to the 2D case becomes 
difficult. Another approach would be to solve equations (10) by a Lagrangian method, as done 
by Ishii et a1.13 and Sommerfeld;20 the trouble then arises from the difficulty in following the 
particles through a non-structured grid. As mentioned previously, in order to couple the gas 
and particle systems, one has to find the neighbouring cells around the location of each group 
of particles and then make interpolations. This operation is difficult and expensive in term of 
CPU time. 

The most appealing procedure would seem to be to solve our equations in the form (lo), since 
this system does not admit shocks. However, as pointed out above, this system possesses a single 
characteristic direction us (and us for the fluxes along y). Such a degenerate hyperbolic system 
cannot therefore be treated by the traditional methods of gas dynamics, which were established 
for strictly hyperbolic systems. In addition, because of the one-directional propagation of 
information, the system has to be solved by an upwind scheme. Among the formulations 
developed for gas dynamic applications, one particular scheme seems to possess the required 
features, namely the donor-cell scheme. This was left out owing to its poor performance at shock 
capturing, but in our present case shocks are absent. The solution obtained by the donor-cell 
scheme will have the additional advantage of verifying the Riemann problem evaluated at the 
interfaces (or intercells); therefore it is appropriate to envisage the Riemann problem for a 
multivalued system such as equations (10). 

2.2.1. Solution of the Riemann problem for the equations of particle motion. Let us consider 
the one-dimensional case and assume that all magnitudes within the cells are piecewise constant. 
Denote by u the velocity and by p the apparent particle density; subscripts ‘r’ and ‘1’ relate to 
the right- and left-side states respectively, while superscript ‘*’ marks the state retained at the 
interface of two cells. 

(a) Expansion: u1 < u, 
(al) u1 > 0 and u, > 0 (Figure 2). 
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1 r X 

Figure 2. First configuration for the Riemann problem 

The solution for this case is p* = p l ,  u* = u l .  
(a2) u1 < 0 and u, > 0 (Figure 3). 

t j, 
U l  

c 
I r X 

Figure 3. Second configuration for :he Riemann problem 

The solution for this case is p* = 0. When a particle bed is set in motion simultaneously in two 
opposite directions, no particles are left at the interface (i.e. a particle void is produced). 

(a3) u1  < 0 and u, < 0 (Figure 4). 
This case is symmetric with (al), i.e. p* = p,, u* = u,. 

1 r X 

Figure 4. Third configuration for the Riemann problem 

(b) Compression: u1 > u, 
(bl) u1 > 0 and u, > 0 (Figure 5). 
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1 r X 

Figure 5. Fourth configuration for the Riemann problem 

For this case the solution is p* = pl, u* = u l .  
(b2) u1 > 0 and u, < 0 (Figure 6). 
The solution in this case is p* = p1 + pr, (pu)* = plul + prur; therefore 

u* = ( ~ 1 ~ 1 +  Prur)/(Pl+ 

U r  ' t  

1 r X 

Figure 6. Fifth configuration for the Riemann problem 

When two particle beds approach from opposite directions, they coalesce (since we have assumed 
that there does not exist any particle-particle interaction). The resulting concentration rate is 
the sum of the two rates (left and right); the flow rate is the algebraic sum of the two flow rates, 
thus yielding the velocity. 

This case is symmetric with (bl), i.e. p* = pr, u* = u,. 
(b3) u ,  < 0 and u, > 0 (Figure 7). 

' 4  

1 r X 

Figure 7. Sixth configuration for the Riemann problem 
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2.2.2. The donor-cell scheme in unstructured meshes. After writing system (8) in the vector 
form 

and making use of the notation introduced above, the donor-cell formulation for an unstructured 
mesh can be written as 

with the notation B meaning one of the six solutions of the Riemann problem. 
This formulation presents a very important disadvantage. In fact, this balance equation over 

the control volume implies losing the history of each particle family. We have hereby introduced 
the important notion of particle family: this is characterized by its size (particle radius), density, 
momentum, energy or more generally its history. Why is losing the history of a particle 
important? Consider for example two jets of particles moving in opposite directions as shown 
in Figure 6. This is the extreme case of particle compression as defined above. When the 
conservation law is applied, we find as expected an increase in density, but the resulting 
momentum is an average momentum. If collisions are negligible because the medium is highly 
diluted, physically the two jets cross each other instead of having an average velocity. In 
summary, the conservation law applied in the donor-cell scheme is not compatible with a 
multivaled system where two velocities can exist at a given location. In contrast, if the resolution 
method was Lagrangian, with an independent following of each particle, the problem would be 
readily solved. For this reason the range of validity of Dukowicz's method" is larger than that 
of the present one. However, if we look at the significance of the particle Riemann problem and at 
the physical cases one has to treat most commonly, our method can constitute an interesting 
alternative to Dukowicz's method. Recall that among the six cases of the Riemann problem, 
three are related to expansions and the other three to compressions. 

In the case of expansion zones any control volume contains particles with the same history, 
the only effect of an expansion being to pull the particles apart. Expansions correspond to 
numerous physical cases encountered in industrial applications. When particles are injected 
through an orifice, they are generally accelerated continuously to the exit by the gas flow. 
Compressions occur for example when faster particles reach the same control volume as slower 
particles. This kind of situation occurs in complex flows (e.g. particle vortices) and always when 
treating a particle-wall interaction or a symmetry axis. In practice, when the flow is very complex, 
one must resort to a Lagrangian formulation. However, when compressions occur only in the 
treatment of boundary conditions or in a limited number of regions of the particle flow, our 
method remains attractive. For example, for the treatment of a symmetry axis one has simply 
to introduce a second family of particles characterized by a new set of equations. Now one has 
to solve 

aP, aPgUg dPgVg 
at ax ay -+- +--=o, 
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The second family is initially set to zero. When particles of the first family reach the symmetry 
axis, we apply to this set of equations absorption conditions, while for particles of the second 
family we apply reflective conditions for the computation of fluxes at the axis of symmetry 
(Figure 8): 

- - - * -  
vsjsl,sym. f i  = vs l .o , , ,  . n'l vs/sl.syrn. t = vsl,w,. '9 Psl . sym - PsL.O,y,; - - - * - .  

v s 2 , s y m  . = - v s 1 .  usym * fil vs2 , sy rn  t = ~ s / S 1 . u r y m .  i, P s 2 , s y m  - P s l . u r y m *  

2.2.3. Coupling of the gas and particle systems. Once the solution of the two homogeneous 
systems (gas and particles) has been found, the solution of the non-homogeneous system (7), (8) 
is to be obtained by integration in time over the interaction terms. This means that we have to 
solve dU/dt = H ,  where H contains the coupling terms. A fourth-order explicit Runge-Kutta 
procedure has been used. When the source terms are strong, the time step for integration is 
reduced according to the criterion Ar = ArcFL/m, with m = int(1 v, - vsl/D), and integration of 
the previous set of ODES is performed until the number of iterations reaches m. The value used 
for D in many applications is D = 10 m s-'. 

I axis of symetry 

Figure 8. Mesh element close to the axis of symmetry 
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3. RESULTS 

Before presenting results illustrating the capabilities of the method, we have to validate it. The 
validation of a two-phase numerical code is difficult, because experiments in two dimensions 
are rather rare; two-phase shock tube experiments give one-dimensional results and other 
experiments are generally three-dimensional. As an alternative we propose to perform the 
validation of the present method by making a comparison with an existing scheme. When the 
geometry of the physical problem is not too complex, a central scheme such as the MacCormack6 
finite difference method can be used to solve systems (7) and (8). Two-phase computations in 
nozzle flows have already been achieved with this scheme.25726 We compare here results obtained 
by this central scheme with those obtained by our upwind scheme. The MacCormack scheme 
is widely used, so no particular comment is given here. The equations are solved in a Cartesian 
computational domain after mathematical transformation. In addition, a second-order damping 
term is added to avoid non-linear instabilities. The physical problem chosen as a test case is a 
difficult one, because the two-phase nature of the flow results from the injection of droplets 
into a gaseous inviscid stream in a nozzle. When the injection of particles is considered, two 
kind of flows are encountered: a one-phase flow upstream of the injection and a two-phase flow 
downstream. Some difficulties appear generally26 at the boundary between the single-phase and 
the two-phase flow. Droplets are injected through two symmetrical injectors (with respect to the 
axis of the nozzle). To treat the problem, boundary conditions have to be set. 

For the gasflow 

(i) Inlet: reservoir conditions (P = 4.5 atm, T = 900 K). 
(ii) Outlet: reservoir conditions (P = 1 atm, T = 300 K). 

(iii) Duct walls: symmetry conditions (reflection). 

For the particles 

(i) Nozzle inlet: no particles (p, = 0). 
(ii) Nozzle outlet: absorption (extrapolation) conditions. 

(iii) Nozzle walls: the wall is assumed impervious and particles are assumed not to adhere 
nor to reflect. Thus they are sliding along the wall. This constraint may be satisfied by 
imposing the simple conditions ps,wall = ps,o,,l,, = -us,,,w,,, and us, wall = us,,,,, when 
computing the wall fluxes. The reflection condition applied to the particle equation system 
reduces to a sliding condition when applying the conservation law on the control volume 
at the wall. For the finite difference scheme the upwind Warming and Beam2’ scheme is 
used. 

(iv) Injection: ps = 6 kg m-3 with a real density of the injected particles of 1000 kg mP3, 
corresponding to a void fraction a = 0.994. In addition, the injection velocity is 
us = 18 m s- (us = 0) and the particle diameter is set to 50 pm. 

Initial conditions 

The gas is at rest under standard atmospheric conditions: initially the nozzle does not contain 
any particles (p, = 0). 

Closure relations 

(i) Equation of state: the gas is assumed perfect, i.e. P = (y - 1) p e, with y = 1.4. Real gas 
effects could readily be taken into account by using van der Waals’ equation, for 
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example, since exact solutions to the Riemann problem for a real gas may be computed 
using the procedure developed by Larini et a1.28 

(ii) Drag force: 

[Fd]8 = 6 nrp p (0, - uig)Npfd, with fd = 0.01833Re (drag coefficient), 

where rp is the particle radius and N ,  is the number of particles per unit volume (of the 
order of 10" particles m-3). 

The results presented relate to the steady state obtained after a run of 700 cycles with a time 
step of 0.7 CFL. The contours of ps are shown in Plate 1. The results are quite comparable. The 
two jets of droplets from the two injectors have met each other. One can notice a slight difference 
between the two schemes with respect to the size of the jet at the exit: it is larger with the 
MacCormack scheme than with the upwind scheme. This is clearly seen in Figure 9, where a 
cross-section of the particle density in the divergent part of the nozzle is plotted. This difference 
is due to the second-order damping term necessary for the MacCormack scheme and its poor 
handling of contact-discontinuity-type waves. Actually, the boundary between the one-phase 
and the two-phase flow characterized by the contour of the particle jet is a contact-discontinuity- 
type wave. All other details about the comparison of the two schemes can be found in Reference 
29. 

The next problem uses the same initial conditions and closure relations as previously. The 
gas boundary conditions are identical. The injection boundary conditions are harder: ps = 
50 kg m-3, corresponding to a void fraction a = 0.95, the injection velocity is equal to 70 m s - '  
and the particle diameter is set to 10 pm. The main difficulty remains in the geometry. From a 
reservoir a gas outflow is generated into a nozzle followed by a bend; in a certain section of the 
nozzle particles are injected (Figure 10). 

The following results present the velocity fields for the gas and particles as well as the density 
distributions at steady state. The duration of the simulation was about 5 min CPU time on an 

w 
9 
0 

c;s 
- ?  0 - Central, Scheme 

0 

= - Upwind Scheme * 

8 
0 

0 .0  0.9 I .a 2.7 3 ~ 6  
Apporent Density Ikg/m') 

Figure 9. Cross-section of particle density at steady state in diverging part of nozzle 
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n 

Figure 10. As Figure 8 but for a 15 km wide seamount 

817 

Figure 1 1 .  Grid configuration 

IBM 3090 using the fast and exact Riemann solver of Gottlieb and Groth3' for the gas phase. 
Plates 2-6 and Figure 11 show the gas velocity field, the particle velocity field, the gas density 
distribution, the particle density distribution, the gas pressure distribution and the grid configura- 
tion respectively. 

The high resolution of the particle fronts is emphasized in Plates 3 and 5 :  one may notice 
that in Plate 3 the regions containing particles and those free of them are well resolved; the 
regions with high particle concentrations are also readily identified. 

4. CONCLUSIONS 

An efficient numerical method has been developed for the treatment of gas-particle two- 
phase flows. It is based upon a second-order TVD scheme for the gas, while the particle flow 
is treated by an upwind method derived from the donor-cell method. The solution to the 
Riemann problem for the equations of the dispersed phase is also developed and linked into the 
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donor-cell algorithm. Particular care must be taken when particle compressions (as defined 
above) occur. 

Results are presented for a specific problem dealing with the injection of particles into a nozzle 
where it was necessary to follow the development of particle fronts. Later on we intend to focus 
our attention on a second-order treatment of the particle flow equations. 

APPENDIX: NOMENCLATURE 

total internal energy 
reaction energy in a combustion process 
drag coefficient 
drag force 
vector of conservative fluxes along x 
vector of conservative fluxes along y 
normal unit vector, pointing outwards from element T j ,  for segment 6 q  n 6 q k  
components of vector ri 
number of particles per unit volume 
pressure 
convective heat flux 
Reynolds number 
intergranular stress tensor 
area of element T j  
barycentric velocity components in x- and y-direction respectively 
vector of conservative parameters 
solution of exact Riemann problem 

Greek letters 

a 

6T, n ST,, 
dj" 

S T j  

6; 
r 
r E C  

rv 
P C  

P 
cClj 

Subscripts 

1 
g 
r 
S 

volume fraction 
boundary of element T j  
interface between element T j  and element T j k  

slope of conservative variables along x at time n for element T,  
slope of conservative variables along y at time n for element T j  
mass transfer flux 
kinetic energy flux due to mass transfer 
momentum flux due to mass transfer 
dynamic compaction viscosity 
specific mass 
centre of gravity of element T j  

left state 
gas phase 
right state 
dispersed phase 
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Superscripts 
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1 

j * 

1. 
2. 

3. 

4. 

5.  

6. 
7. 

8. 

9. 

10. 

1 I .  

12. 

13. 

14. 

15. 

16. 
17. 

18. 
19. 
20. 

21. 
22. 

23. 

24. 

25. 
26. 

27. 

28. 

29. 

30. 

interface between gas and dispersed phase 
identifying index of an element 
solution state of Riemann problem 
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